Excellently done!
It's VERY hard for most cameras to pick up on such subtle wavelength differences, and yours did an excellent job.
It's not hard, it's actually impossible. Laser sources sit right on the outer edge of the CiE chart, and well outside the gamut of any camera consumers can access. Because of this, the camera must approximate. And how each camera handles such extremely saturated light is a function of each camera's sensor and firmware. The best we can hope for is to shoot pics like gismo's and tell everyone that the photos "look right" compared to the live scene.
On top of all that, lights in the 480-520nm range are the absolute worst to approximate, for two more reasons.
First, the 480-520nm region is notable in that you see large hue shifts over small wavelength variations, more so than any other part of the spectrum. On the CiE chart, you can see the "stretch" of the 480-520nm range is large compared to any other 40nm segment around the curve. So not only would small variations from camera to camera result in big potential "wrong" hues, but the human eye itself also varies for genetic reasons. If you want to start a fight among light nerds, shine a 495nm light around and ask them if it's blue or green.
Second: if you look at CiE charts with gamuts on them, you'll notice that for all of them, the biggest out-of-gamut area is the one to the upper left -- the saturated blue-green space, of course. All these lasers are up there.
So, in summation: if you could build a tuneable laser that covered the 480-520nm range and slowly adjust from one to the other extreme, you would find that any camera would tend to render it all green or all blue for a good part of the time, and would then quickly "snap" to the other at a point which would vary by each camera. Light a scene with nothing but 470-520nm light, and you'll get bigger variation among diffrent cameras than any other scene. That's why places like the Long Beach Aquarium are a great torture test for camera color accuracy.
So long as we shoot just the pure sources, it's never going to be better than "this looks right" approximations.
There IS a way to accurately capture *hue* in the sRGB space, however: you have to desaturate the light. That moves the light color away from the saturated edge towards the center of the CiE chart, and therefore into the sRGB gamut of your camera.
The only way to do that in physical reality is to mix your source with neutral white light. You set up a white card in a room with a neutral white source, and then set white balance and exposure so you get neutral grey color from the card, with R, G and B values ideally around 128, 128,128.
Then, diffuse your laser and shine it onto the white card. You want the intensity of the laser to be enough to significantly color the scene, but not enough to overexpose it. All RGB values should be less than 255. If your camera has zebras or RGB histograms, use them - you don't want any clipping.
I've been meaning to test this for a long time with a range of LED sources I have in this part of the spectrum, but I'm pretty confident in the theory.