Sorry to hear that you cracked your IR filter!
If you decide to try it again you may want to expand the beam diameter before it strikes the filter to spread the power out and prevent a localized hot-spot.
One advantage of using a prism vs an IR filter is that the prism is merely refracting the beam so there is far less internal heating vs a filter that is trying to absorb part of the beam. You're unlikely to damage a prism even at very high power levels.
Another advantage to using a prism is that any attenuation from the optic cancels out between the two measurements (because the loss applies equally to both the visible portion and the IR portion), whereas with the filter you expect near total rejection of the IR but you don't know how much of the visible light you will also lose. Although your idea to calibrate the visible loss with a 520 nm direct diode is a clever one - I agree that the attenuation at 520 should be within a few percent of the attenuation at 532. Assuming you can find a more robust filter that can handle the peak power this approach should work.
Regarding the relative power of 808 and 1064, the rule of thumb is that the KTP doubling stage is 40% efficient. However, as the power density goes up the KTP efficiency increases, and if you have very accurate temperature control on the KTP crystal you can get even better efficiency. I think the high end is around 70% or so. To be safe I would assume at least 50% conversion efficiency, meaning that the intra-cavity IR flux at 1064 nm is probably around 20 watts.
The KTP will have an optical coating on the output face that reflects 1064 and passes 532. Depending on how good that coating is, you may have between 2 and 10 percent of the 1064 leaking through it. So if they did not include a final IR filter at the aperture you could expect to see between 400 mw and 2 watts of 1064 in the output.
The 808 nm pump is more difficult to quantify. Vanadate efficiencies are all over the place and there are many variables to consider. I think it's safe to assume that your 808 nm pump is at least double the power of the 1064 nm output you need, although in practice it could be 4 times as much or more.
But if we go with the most efficient assumption, that means your pump source would need to be at least 40 watts. Similar to the KTP, the output face of the vanadate crystal will also have a coating, except that this one will pass 1064 and reflect 808. So assuming the same efficiency range for the coating means 2 to 10 % of your 808 pump wavelength could be leaking through, giving you something between 800 mw and 4 watts of 808 in the output. Remember that this is on top of the 1064 that leaks through the KTP...
This ignores any 808 losses through the KTP of course, and it also assumes that they did not include a final broad-band IR filter at the aperture. If they did include the filter, then you should see at least an order of magnitude reduction in the above numbers, if not two.
Regarding TTL transmission via laser, yeah, sounds like you're on a similar track to the folks I spoke with. Basically it's "Packet Radio", but with light instead of RF. Telescope on the receiving end is a must, but beam expansion at the sending end is equally important to improve divergence. Also, aggressive filtering of any interfering ambient light really helps. (Combination of band-pass filters and a long tube in front of the receiving telescope to block sunlight.)
Final thought: if you are looking for a free video editor, you can still download Microsoft's Movie Maker and the GoPro Studio software, even though they are no longer officially supported. Both will run under Windows 10 just fine. I've also just started playing around with VideoPad from NCH, and so far it's pretty powerful... (VideoPad is free for non-commercial home use.)
Adam