The telescope used for APOLLO has a 3.5 meter diameter mirror, and is located at the Apache Point Observatory in southern New Mexico. We use the telescope as a gigantic (3.5 meter wide) laser pointer and also as a signal receiver. We reference our measurements to the center of the telescope mount, where the azimuth axis and elevation axis intersect each other. As the telescope swings around to point at different parts of the sky, this point stays fixed—almost.... The position of the telescope relative to the center of the earth isn't as stationary as you might imagine. The continental plate drifts, the tides from the moon and sun make the site swell by about a foot twice a day, weather systems can push the local crust down, etc. We have to be aware of all of these influences and take them into account in order to extract the scientifically useful center-to-center distance between the earth and moon.
To concentrate as much laser power as possible onto the reflector array, we must ensure that the beam leaving the telescope is as collimated (parallel, non-diverging) as possible. We use a laser both because we can get ultra-short pulses of light from a laser, and also because the light from a laser is extraordinarily directional—not diverging the way a flashlight, or even searchlight, would. Even so, the turbulent atmosphere distorts the beam, imparting a divergence of about one arcsecond (sometimes more). One arcsecond is 1/3600th of a degree, or the angular size of a quarter about five kilometers (about 3 miles) away. At the distance of the moon, this angle translates to 1.8 kilometers (just over a mile). Though this is large compared to the size of the reflector (most of the light is wasted—never hitting the reflector), it is still a challenge to point and maintain the laser beam on this tiny patch of the moon.